Part Number Hot Search : 
LTC1642 AMT8310 4J1685J CRO3120A 11EWA RTL8201 AZ432BR 500000
Product Description
Full Text Search
 

To Download IRFB4310ZG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10/15/08 www.irf.com 1 hexfet   power mosfet benefits improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free  halogen-free applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits IRFB4310ZGpbf to-220ab IRFB4310ZGpbf s d g d gds gate drain source s d g v dss 100v r ds ( on ) typ. 4.8m max. 6.0m i d (silicon limited) 127a i d (package limited) 120a   absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v(wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) sin g le pulse avalanche ener g y  mj i ar avalanche current  a e ar repetitive avalanche ener g y  mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  CCC 0.6 r cs case-to-sink, flat greased surface 0.50 CCC r ja junction-to-ambient  CCC 62 a c/w c 130 see fig. 14, 15, 22a, 22b, 250 18 -55 to + 175 20 1.7 10lb  in (1.1n  m) 300 max. 127  90  560 120 downloaded from: http:///

 2 www.irf.com    calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 120a. note that current limitations arising from heating of the device leads may occur withsome lead mounting arrangements.   repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.047mh r g = 25 ? , i as = 75a, v gs =10v. part not recommended for use above the eas value and test conditions.  i sd 75a, di/dt 600a/s, v dd v (br)dss , t j 175c. s d g  pulse width 400s; duty cycle 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994. r is measured at t j approximately 90c. static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 CCC CCC v ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.11 CCC v/c r ds(on) static drain-to-source on-resistance CCC 4.8 6.0 m ? v gs(th) gate threshold voltage 2.0 CCC 4.0 v i dss drain-to-source leakage current CCC CCC 20 a CCC CCC 250 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 r g internal gate resistance CCC 0.7 CCC ? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 150 CCC CCC s q g total gate charge CCC 120 170 nc q gs gate-to-source charge CCC 29 CCC q gd gate-to-drain ("miller") charge CCC 35 q sync total gate charge sync. (q g - q gd ) CCC 85 CCC t d(on) turn-on delay time CCC 20 CCC ns t r rise time CCC 60 CCC t d(off) turn-off delay time CCC 55 CCC t f fall time CCC 57 CCC c iss input capacitance CCC 6860 CCC pf c oss output capacitance CCC 490 CCC c rss reverse transfer capacitance CCC 220 CCC c oss eff. (er) effective output capacitance (ener g y related) CCC 570 CCC c oss eff. (tr) effective output capacitance (time related) CCC 920 CCC diode characteristics symbol parameter min. typ. max. units i s continuous source current CCC CCC 127  a (body diode) i sm pulsed source current CCC CCC 560 a (body diode)  v sd diode forward voltage CCC CCC 1.3 v t rr reverse recovery time CCC 40 ns t j = 25c v r = 85v, CCC 49 t j = 125c i f = 75a q rr reverse recovery charge CCC 58 nc t j = 25c di/dt = 100a/s  CCC 89 t j = 125c i rrm reverse recovery current CCC 2.5 CCC a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) i d = 75a r g = 2.7 ? v gs = 10v  v dd = 65v i d = 75a, v ds =0v, v gs = 10v t j = 25c, i s = 75a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 5ma  v gs = 10v, i d = 75a  v ds = v gs , i d = 150a v ds = 100v, v gs = 0v v ds = 80v, v gs = 0v, t j = 125c mosfet symbol showing the v ds =50v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz, see fig. 5 v gs = 0v, v ds = 0v to 80v  , see fig. 11 v gs = 0v, v ds = 0v to 80v conditions v ds = 50v, i d = 75a i d = 75a v gs = 20v v gs = -20v downloaded from: http:///

 www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 4.5v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 2.0 3.0 4.0 5.0 6.0 7.0 8.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 50v 60s pulse width t j = 25c t j = 175c -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 75a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 12000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 40 80 120 160 200 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v vds= 50v vds= 20v i d = 75a downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 90 100 110 120 130 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e i d = 5ma 0 20 40 60 80 100 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 11a 19a bottom 75a 0.1 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 140 i d , d r a i n c u r r e n t ( a ) limited by package downloaded from: http:///

 www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far inexcess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b.4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14).t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) ? (sec) 0.018756 0.000373 0.159425 0.000734 0.320725 0.005665 0.101282 0.115865 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 75a downloaded from: http:///

 6 www.irf.com   
      fig 16. threshold voltage vs. temperature            
      
        -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250a id = 150a 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 4 8 12 16 20 24 i r r m - ( a ) i f = 30a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 400 500 600 q r r - ( n c ) i f = 45a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 400 500 600 q r r - ( n c ) i f = 30a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 4 8 12 16 20 24 i r r m - ( a ) i f = 45a v r = 85v t j = 125c t j = 25c downloaded from: http:///

 www.irf.com 7 fig 23a. switching time test circuit fig 23b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform   
 1     0.1 %          + -   vds vgs id vgs(th) qgs1 qgs2 qgd qgodr 1k vcc dut 0 l s 20k 

 

 ?      ?    ?       p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
     + - + + + - - -        ? !   "#  ? 
 $%&%% ?     "  '' ? %&%%(
&  
          !  fig 21.   
 
   for hexfet  power mosfets downloaded from: http:///

 8 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 10/2008 

 
 

  
          
       
  to-220ab packages are not recommended for surface mount application.  

       ! "# " $ %   &    ' (  & (&) 
* && *+
 )   & ) (&) ,,+,& - ,- +(& * (&)   .//0  !% .% "# 1 $ % ( ) * downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFB4310ZG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X